Central extensions of nilpotent Lie superalgebras

Quentin Ehret

MAThEOR Days

11th July 2024

Based on a joint work with S. Bouarroudj

K ロ ▶ (K @) | K 할) | K 할) | [할

 $2Q$

جامعــة نـيويوركء ابـوظـي **PE NYU ABU DHABI**

Lie superalgebras

Super vector spaces.

Lie superalgebras

Super vector spaces.

Definition

A Lie superalgebra $L = L_{\bar{0}} \oplus L_{\bar{1}}$ is a $\mathbb{Z}/2\mathbb{Z}$ -graded vector space equipped with a bilinear map $[\cdot, \cdot] : L \times L \rightarrow L$ satisfying for all $x, y, z \in L$:

$$
\bullet \ |[x,y]| = |x| + |y| ;
$$

$$
\bullet [x,y] = -(-1)^{|x||y|}[y,x];
$$

$$
\bullet (-1)^{|x||z|}[x,[y,z]] + (-1)^{|x||y|}[y,[z,x]] + (-1)^{|y||z|}[z,[x,y]] = 0.
$$

Let $f: V \to W$ be a map between $\mathbb{Z}/2\mathbb{Z}$ -graded vector spaces. Then:

- the map f is called $\bm{\text{even}}$ if $f(V_{\overline{i}}) \subset W_{\overline{i}}$;
- the map f is called \mathbf{odd} if $f(V_{\overline{i}})\subset W_{\overline{i+1}};$

メロメメ 御き メミメメ ミメー 毛

Modules of Lie superalgebras

Let L_1, L_2 be Lie superalgebras. A **morphism of Lie superalgebras** is an even linear map $f: L_1 \rightarrow L_2$ such that

 $f([x, y]_1) = [f(x), f(y)]_2, \forall x, y \in L_1.$

Modules of Lie superalgebras

Let L_1, L_2 be Lie superalgebras. A **morphism of Lie superalgebras** is an even linear map $f: L_1 \rightarrow L_2$ such that

$$
f([x,y]_1)=[f(x),f(y)]_2, \ \forall x,y\in L_1.
$$

Let L a Lie superalgebra. A vector space M is called L-**module** if there is a Lie superalgebras map

$$
\phi: \mathsf{L} \to \mathsf{End}(\mathsf{M}).
$$

In particular, we have

$$
\phi([x,y]) = \phi(x) \circ \phi(y) - (-1)^{|x||y|} \phi(y) \circ \phi(x).
$$

3 / 14

Modules of Lie superalgebras

Let L_1, L_2 be Lie superalgebras. A **morphism of Lie superalgebras** is an even linear map $f: L_1 \rightarrow L_2$ such that

$$
f([x,y]_1)=[f(x),f(y)]_2, \ \forall x,y\in L_1.
$$

Let L a Lie superalgebra. A vector space M is called L-**module** if there is a Lie superalgebras map

$$
\phi: \mathsf{L} \to \mathsf{End}(\mathsf{M}).
$$

In particular, we have

$$
\phi([x,y]) = \phi(x) \circ \phi(y) - (-1)^{|x||y|} \phi(y) \circ \phi(x).
$$

Examples: trivial and adjoint.

Let L be a Lie superalgebra. We define a **descending central sequence** by

$$
C^0(L) = L, \text{ and } C^{k+1}(L) = [C^k(L), L].
$$

The Lie superalgebra L is called **nilpotent** if there exists $k \geq 0$ such that $C^{k}(L) = 0.$

That is, L is nilpotent if there exists $k > 0$ such that

$$
[...[x_1, x_2], x_3], ...,], x_k] = 0, \quad \forall x_i \in L.
$$

4 / 14

イロト イ団 トイミト イヨト 一番

Let $(L, [\cdot, \cdot]_L)$ be a Lie superalgebra and let M be a trivial L-module. We consider $E := L \oplus M$ and we define

$$
[x+m, y+n]_E := [x, y]_L + \Delta(x, y), \ \forall x, y \in L, \ \forall m, n \in M,
$$

with $\Delta: L \times L \rightarrow M$ a bilinear super-skewsymmetric map.

Let $(L, [\cdot, \cdot]_L)$ be a Lie superalgebra and let M be a trivial L-module. We consider $E := L \oplus M$ and we define

$$
[x+m, y+n]_E := [x,y]_L + \Delta(x,y), \ \forall x,y \in L, \ \forall m,n \in M,
$$

with $\Delta: L \times L \rightarrow M$ a bilinear super-skewsymmetric map.

Proposition The pair $(E, [\cdot, \cdot]_E)$ is a Lie superalgebra if and only if $(-1)^{|x||z|}\Delta(x,[y,z]) + (-1)^{|y||x|}\Delta(y,[z,x]) + (-1)^{|z||y|}\Delta(z,[x,y]) = 0.$ (1)

Let $(L, [\cdot, \cdot]_L)$ be a Lie superalgebra and let M be a trivial L-module. We consider $E := L \oplus M$ and we define

$$
[x+m, y+n]_E := [x, y]_L + \Delta(x, y), \ \forall x, y \in L, \ \forall m, n \in M,
$$

with $\Delta: L \times L \rightarrow M$ a bilinear super-skewsymmetric map.

Proposition The pair $(E, [\cdot, \cdot]_E)$ is a Lie superalgebra if and only if $(-1)^{|x||z|}\Delta(x,[y,z]) + (-1)^{|y||x|}\Delta(y,[z,x]) + (-1)^{|z||y|}\Delta(z,[x,y]) = 0.$ (1)

The elements ∆ that satisfies Eq. [\(1\)](#page-7-0) are called (Chevalley-Eilenberg) 2-cocycles with trivial coefficients.

Let $(L, [\cdot, \cdot]_L)$ be a Lie superalgebra and let M be a trivial L-module. We consider $E := L \oplus M$ and we define

 $[x + m, y + n]_E := [x, y]_L + \Delta(x, y), \forall x, y \in L, \forall m, n \in M,$

with $\Delta: L \times L \rightarrow M$ a bilinear super-skewsymmetric map.

Proposition The pair $(E, [\cdot, \cdot]_E)$ is a Lie superalgebra if and only if $(-1)^{|x||z|}\Delta(x,[y,z]) + (-1)^{|y||x|}\Delta(y,[z,x]) + (-1)^{|z||y|}\Delta(z,[x,y]) = 0.$ (1)

The elements Δ that satisfies Eq. [\(1\)](#page-7-0) are called (Chevalley-Eilenberg) 2-cocycles with trivial coefficients.

In the case where Eq. [\(1\)](#page-7-0) is satisfied, $(E, [\cdot, \cdot]_E)$ is called **central extension** of L by M.

Central extensions of restricted Lie superalgebras, revisited

Let $(L, [\cdot , \cdot])$ be a Lie superalgebra, and M be an abelian Lie superalgebra (*i.e*, $[m, n] = 0 \forall m, n \in M$).

An extension of L by M is a short exact sequence of Lie superalgebras

$$
0\longrightarrow M\stackrel{\iota}{\longrightarrow}E\stackrel{\pi}{\longrightarrow}L\longrightarrow 0.
$$

Central extensions of restricted Lie superalgebras, revisited

Let $(L, [\cdot , \cdot])$ be a Lie superalgebra, and M be an abelian Lie superalgebra (*i.e*, $[m, n] = 0 \forall m, n \in M$).

An extension of L by M is a short exact sequence of Lie superalgebras

$$
0\longrightarrow M\stackrel{\iota}{\longrightarrow}E\stackrel{\pi}{\longrightarrow}L\longrightarrow 0.
$$

In the case where $\iota(M) \subset \iota(E) := \{a \in E, \, [a, b] = 0 \,\,\forall b \in E\}$, M is a trivial L-module. These extensions are called central extensions.

Two central extensions of L by M are called **equivalent** if there is a Lie superalgebras morphism σ : $E_1 \rightarrow E_2$ such that the following diagram commutes:

Classification of low dimensional Lie superalgebras

Goal: classify (up to isomorphism) nilpotent Lie superalgebras of dimension 4, over an (alg. closed) field of characteristic different from 2.

Classification of low dimensional Lie superalgebras

Goal: classify (up to isomorphism) nilpotent Lie superalgebras of dimension 4, over an (alg. closed) field of characteristic different from 2.

Proposition

Let L be a nilpotent Lie superalgebra of dimension n. Then, L is isomorphic to a central extension by a 2-cocycle of a nilpotent Lie superalgebra of dimension $n - 1$ by a trivial module M of dimension 1 (i.e., $M = K$).

Classification of low dimensional Lie superalgebras

Goal: classify (up to isomorphism) nilpotent Lie superalgebras of dimension 4, over an (alg. closed) field of characteristic different from 2.

Proposition

Let L be a nilpotent Lie superalgebra of dimension n. Then, L is isomorphic to a central extension by a 2-cocycle of a nilpotent Lie superalgebra of dimension $n - 1$ by a trivial module M of dimension 1 (i.e., $M = K$).

- **•** We start from the classification of 3-dimensional nilpotent Lie superalgebras.
- ² For each nilpotent 3-dimensional Lie superalgebra, we compute the equivalence classes of 2-cocycles under the action by automorphisms given by

$$
(A \cdot \Delta)(x, y) = \Delta(A(x), A(y)), \ \forall x, y \in L \tag{2}
$$

- ³ We build the corresponding central extensions.
- **4** Some of the superalgebras obtained are isomorphic. We detect and remove redundancies.

Dimension 3 (by brute force)

•
$$
\underline{\text{sdim}(L)} = (0|3): L = \langle 0|e_1, e_2, e_3 \rangle: [\cdot, \cdot] \equiv 0.
$$

$$
\bullet \; \underline{\mathsf{sdim}}(\mathsf{L}) = (1|2) \colon \, \mathsf{L} = \langle e_1 | e_2, e_3 \rangle.
$$

\n- $$
\mathsf{L}_{1|2}^1 = \langle e_1 | e_2, e_3 \rangle
$$
 (abelian):
\n- $\mathsf{L}_{1|2}^2 = \langle e_1 | e_2, e_3; [e_2, e_3] = e_1 \rangle$:
\n

\n- \n
$$
\text{sdim}(L) = (2|1): L = \langle e_1, e_2 | e_3 \rangle.
$$
\n
\n- \n $\text{L}_{2|1} = \langle e_1, e_2 | e_3 \rangle \text{ (abelian)}:$ \n
\n

\n- $$
\mathsf{sdim}(L) = (3|0): L = \langle e_1, e_2, e_3 \rangle.
$$
\n- $\mathsf{L}_{3|0} = \langle e_1, e_2, e_3 \rangle$ (abelian):
\n

\n- $$
\mathbf{L}_{1|2}^3 = \langle e_1 | e_2, e_3; [e_1, e_2] = e_3 \rangle
$$
\n- $\mathbf{L}_{1|2}^4 = \langle e_1 | e_2, e_3; [e_3, e_3] = e_1 \rangle$
\n

$$
\bullet \ \mathsf{L}^2_{2|1} = \langle e_1, e_2 | e_3; [e_3, e_3] = e_2 \rangle:
$$

$$
\bullet\ \ \mathsf{L}^2_{3|0}=\langle e_1,e_2,e_3;[e_1,e_2]=e_3\rangle
$$

メロメメ 御 メメ きょくきょうき 8 / 14

Dimension 4: scalar restricted 2-cocycles

Notation: Let $L = L_0 \oplus L_1 = \langle e_1, \cdots, e_n | e_{n+1}, \cdots, e_{n+m} \rangle$ be a Lie superalgebra of $sdim(L) = (n|m)$. A basis for the scalar 2-cocycles is then given by

$$
\Delta_{i,j}: L \times L \longrightarrow \mathbb{K}, \qquad 1 \leq i \leq n+m, \ i \leq j \leq n+m,
$$

where $\Delta_{i,j}(e_k,e_l)=\delta_{i,k}\delta_{j,l}$ and $\Delta_{i,j}= -(-1)^{|e_i||e_j|}\Delta_{j,i}.$

Dimension 4: scalar restricted 2-cocycles

Notation: Let $L = L_0 \oplus L_1 = \langle e_1, \cdots, e_n | e_{n+1}, \cdots, e_{n+m} \rangle$ be a Lie superalgebra of sdim(L) = $(n|m)$. A basis for the scalar 2-cocycles is then given by

$$
\Delta_{i,j}: L \times L \longrightarrow \mathbb{K}, \qquad 1 \leq i \leq n+m, \ i \leq j \leq n+m,
$$

where $\Delta_{i,j}(e_k,e_l)=\delta_{i,k}\delta_{j,l}$ and $\Delta_{i,j}= -(-1)^{|e_i||e_j|}\Delta_{j,i}.$

Theorem

Suppose that L is a nilpotent Lie superalgebra of total dimension 3 with $\dim(\mathcal{L}_{\bar{1}}) \geq 1$ over an algebraically closed field of characteristic $p \geq 3$. The equivalence classes of non trivial homogeneous 2-cocycles on L are given by

$$
L = L_{0|3}^1: \Delta_{1,1}, \quad \Delta_{1,2}, \quad \Delta_{1,1} + \Delta_{2,3};
$$
\n
$$
L = L_{1|2}^1: \Delta_{1,2}, \quad \Delta_{2,3}, \quad \Delta_{2,2} + \Delta_{2,3} + \Delta_{3,3};
$$
\n
$$
L = L_{1|2}^2: \Delta_{2,2}, \quad \Delta_{2,2} + \Delta_{3,3};
$$
\n
$$
L = L_{1|2}^3: \Delta_{1,3}, \quad \Delta_{2,2};
$$
\n
$$
L = L_{1|2}^4: \Delta_{2,2}, \quad \Delta_{2,3}, \quad \Delta_{2,2} + \Delta_{2,3}.
$$
\n
$$
L = L_{2|1}^1: \Delta_{1,3}, \quad \Delta_{1,2}, \quad \Delta_{3,3}, \quad \Delta_{1,2} + \Delta_{3,3};
$$
\n
$$
L = L_{2|1}^2: \Delta_{1,3}.
$$

With the list of 2-cocycles, we can extend the Lie brackets using

$$
[x, y]_{\text{new}} = [x, y]_{\text{old}} + \Delta(x, y)X. \tag{3}
$$

With the list of 2-cocycles, we can extend the Lie brackets using

$$
[x, y]_{\text{new}} = [x, y]_{\text{old}} + \Delta(x, y)X. \tag{3}
$$

Example. Consider ${\sf L}_{1|2}^3=\langle e_1|e_2,e_3;[e_1,e_2]=e_3\rangle$. The 2-cocycles are $\Delta_{1,3}$ and $\Delta_{2,2}$. We obtain four superalgebras of dimension 4.

Lie superalgebras obtained by central extensions of ${\color{MyBlue}\mathsf{L}^3_{1|2}.}$

Lie superalgebras obtained by central extensions of ${\color{MyBlue}\mathsf{L}^3_{1|2}.}$

Lie superalgebras obtained by extensions of ${\color{MyBlue}\mathsf{L}_{1|2}^1}$ (abelian).

Lie superalgebras obtained by central extensions of ${\color{MyBlue}\mathsf{L}^3_{1|2}.}$

Lie superalgebras obtained by extensions of ${\color{MyBlue}\mathsf{L}_{1|2}^1}$ (abelian).

We know that ${\mathsf L}^{{\mathsf d}}_{1|3}\not\cong {\mathsf L}^{{\mathsf e}}_{1|3}$ and ${\mathsf L}^{{\mathsf a}}_{1|3}\not\cong {\mathsf L}^{{\mathsf b}}_{1|3}...$

Lie superalgebras obtained by central extensions of ${\color{MyBlue}\mathsf{L}^3_{1|2}.}$

Lie superalgebras obtained by extensions of ${\color{MyBlue}\mathsf{L}_{1|2}^1}$ (abelian).

We know that ${\mathsf L}^{{\mathsf d}}_{1|3}\not\cong {\mathsf L}^{{\mathsf e}}_{1|3}$ and ${\mathsf L}^{{\mathsf a}}_{1|3}\not\cong {\mathsf L}^{{\mathsf b}}_{1|3}...$

But $L_{1|3}^{b} \cong L_{1|3}^{d}$.

 $\mathbf{E} = \mathbf{A} \mathbf{E} + \mathbf{A} \mathbf{E} + \mathbf{A} \mathbf{E} + \mathbf{A} \mathbf{D} + \mathbf{A} \mathbf{D}$

Dimension 4: the classification. Detecting isomorphisms.

It is possible that two superalgebras obtained as central extensions by non-equivalent cocycles are isomorphic. We need to detect and remove redundancies.

Invariants for Lie superalgebras of sdim $= (1|3)$.

Dimension 4: the classification. Lie superalgebras.

Theorem

The classification of 4-dimensional nilpotent Lie superalgebras over an algebraically closed field of characteristic different from 2 is given by:

$$
\underline{\text{sdim}}(L) = (0|4): L = \langle 0 | x_1, x_2, x_3, x_4 \rangle
$$
\n
$$
\frac{L_{0|4}}{L_{0|4}}: [\cdot, \cdot] = 0.
$$
\n
$$
\underline{\text{sdim}}(L) = (1|3): L = \langle x_1 | x_2, x_3, x_4 \rangle
$$
\n
$$
\frac{L_{1|3}}{L_{1|3}} = L_{1|3}^a): \text{ abelian};
$$
\n
$$
\frac{L_{1|3}}{L_{1|3}} = L_{1|3}^b): [x_1, x_3] = x_4;
$$
\n
$$
\frac{L_{1|3}}{L_{1|3}} = L_{1|3}^c): [x_2, x_3] = x_1;
$$
\n
$$
\frac{L_{1|3}}{L_{1|3}} = L_{1|3}^c): [x_3, x_2] = x_3, [x_1, x_3] = x_4;
$$
\n
$$
\frac{L_{1|3}}{L_{1|3}} = L_{1|3}^c): [x_3, x_3] = x_1;
$$
\n
$$
\frac{L_{1|3}}{L_{1|3}} = L_{1|3}^b): [x_2, x_2] = x_1, [x_3, x_4] = x_1.
$$
\n
$$
\frac{\text{sdim}}{L_{2|2}} = L_{2|2}^b): [x_3, x_4] = x_2;
$$
\n
$$
\frac{L_{2|2}}{L_{2|2}} = L_{2|2}^b): [x_3, x_3] = x_2, [x_3, x_4] = x_1;
$$
\n
$$
\frac{L_{2|2}}{L_{2|2}} = L_{2|2}^b): [x_3, x_3] = [x_4, x_4] = x_2, [x_3, x_4] = x_1;
$$
\n
$$
\frac{L_{2|2}}{L_{2|2}} = L_{2|2}^b): [x_1, x_3] = x_4, [x_3, x_3] = x_2.
$$
\n
$$
\frac{L_{2|2}}{L_{2|2}} = L_{2|2}^b): [x_1, x_3] = x_4, [x_3, x_3] = x_2.
$$
\n
$$
\frac{L_{2|2}}{L_{2|
$$

$$
\frac{\text{sdim}(L) = (3|1): L = \langle x_1, x_2, x_3 | x_4 \rangle}{L_{3|1}^1 \left(= L_{3|1}^a \right): \text{ abelian};
$$
\n
$$
L_{3|1}^2 \left(= L_{3|1}^b \right): [x_1, x_2] = x_3;
$$
\n
$$
L_{3|1}^3 \left(= L_{3|1}^c \right): [x_2, x_2] = x_3;
$$
\n
$$
L_{3|1}^4 \left(= L_{3|1}^d \right): [x_1, x_2] = [x_3, x_4] = x_3.
$$
\n
$$
\frac{\text{sdim}(L) = (4|0): L = \langle x_1, x_2, x_3, x_4 | 0 \rangle}{L_{4|0}^1: \text{abelian};}
$$
\n
$$
L_{4|0}^2: [x_1, x_2] = x_3;
$$
\n
$$
L_{4|0}^3: [x_1, x_2] = x_3, [x_1, x_3] = x_4.
$$

Thank you for your attention!

Main reference:

S. Bouarroudj, Q. Ehret, Central extensions of restricted Lie superalgebras and classification of p-nilpotent Lie superalgebras in dimension 4, January 2024, arXiv:2401.08313.